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Abstract

In this thesis we apply the compact implicit integration factor (cIIF) scheme towards

solving the Allen-Cahn equations with zero-flux or periodic boundary conditions. The

Allen-Cahn equation is a second-order nonlinear PDE which has been the focus of

many applications spanning a wide range of fields, such as in material science where

it was first introduced to model the phase separation of two metallic alloys, and in

biology to study population dynamics, just to name a few. The compact implicit

integration method works by first transforming the PDE into a system of ODEs by

discretizing the spatial derivatives using the central differencing scheme. This yields

a semi-discretized form which produces a nice compact representation to the original

PDE. The resulting system is then integrated with respect to time, thereby treating

the linear component of the PDE exactly. The transformed nonlinear portion which

represents the integrand is then approximated by a Lagrange interpolation polynomial

of order r and then integrated exactly, with r ∈ {0, 1, 2} in our study. Altogether,

the cIIF scheme is a fully discrete scheme which is second-order accurate in space

and (r + 1)-order accurate in time. Experiments are also performed to numerically

demonstrate the stability and convergence properties of the proposed scheme.
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Chapter 1

Introduction

Let Ω ∈ Rd be an open, rectangular and bounded region with d ∈ N and T > 0. In

this paper, we shall discuss a scheme for the solution of the Allen-Cahn equations

where 
∂u
∂t

= D∆u− f (u) , x ∈ Ω ⊂ R2, t ∈ [0, T ] ,

u|0 = ut=0 x ∈ Ω,
(1.1)

Ω is an rectangular set, and either Neumann or periodic boundary conditions are

imposed.

The Allen-Cahn equation was first introduced by John W. Cahn and his gradu-

ate student Sam Allen to describe the motion of anti-phase boundaries in metallic

alloys[1]. Specifically, it was proposed as a simple model for phase separation of

metallic components within a binary alloy at a fixed temperature [9]. The function u,

known as the phase field function, assumes values between −1 and 1 where the end-

points represent volumes with pure states. Similarly, values in the region −1 < u < 1

are yielded where mixtures arise.

This phenomena of differences in concentration can also be explained in terms

of the crystal lattice arrangements (see [15]). The anti-phase boundary of thickness

ε > 0 separates two regions, where the arrangement of crystal lattices in one domain

resembles another except for a relative displacement. Upon heating and subsequent

cooling of the solid has the potential to not only move the boundary separating the

two domains, but also cause further disordering among the crystal lattices in the

solid. These regions with the same ordering may also coalesce into larger regions, a

1
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phenomenon known as domain coarsening. In this context, the function u models the

amount of order in a localized region. For a more detailed review of the Allen-Cahn

equation, its derivation and related equations refer to [1, 13, 4].

The parameter ε > 0 is the interface width, and in its initial application denoted

the interaction thickness of the interface separating the two anti-phase domains. The

reaction term is such that f(u) = F ′ (u), where F is the potential energy function, and

in most contexts is taken to be double-welled [9, 5]. It is well known that the Allen-

Cahn equation is a gradient flow in L2 of the Ginzburg-Landau energy functional

equal to

E (u) =
∫

Ω

{1
2 |∇u|

2 + 1
4ε2

(
u2 − 1

)2
}
dx, (1.2)

where E (u) is a decreasing function of time. Beyond its application to various ma-

terial science problems, the Allen-Cahn equation has proved essential in the fields

of image processing [11, 3]; in fluid dynamics where it is used to solve the mean

flow curvature problem [9]; in biology where population dynamics are studied; and

in geology where the phase-field model is applied to the study of geological grain

microstructures [17], just to name a few.

This thesis will primarily deal with the development of the compact Implicit Inte-

gration Factor (cIIF) discretization scheme for the solution of the Allen-Cahn equa-

tion. The technique will first require a rectangular mesh of the spatial domain based

on which the PDE is transformed into a system of ODEs after a spatial discretization.

The two broadly used methods to achieve this are finite difference formulas and spec-

tral methods [2]. Due to the nature of the space, and ease of implementation, we shall

use the central difference method to approximate the Laplacian at the predetermined

points of our rectangular grid.

The remaining nonlinear forcing term is simply evaluated at the points of our

mesh. This yields a semi-discrete approximation consisting of two parts which to-

gether forms a coupled system of ODEs with respect to the independent time variable

2
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t. It is this nice, compact representation mostly attributable to the spatial discretiza-

tion from which the scheme derives its name. It is also a technique borrowed from

a representation developed originally for solving a two-dimensional Poission’s equa-

tion [16]. The resulting compact, semi-discrete system is thereafter multiplied by the

appropriate exponential matrices via the integrating factors method.

As this paper will show, the proposed scheme works by integrating the system

which treats the approximation to the linear portion of the PDE exactly. The remain-

ing nonlinear component in the integrand is approximated by the implicit Lagrange

interpolation polynomial method. This integration allows us to approximate values

for the function u at the points of the spatial mesh and ahead one time step.

Overall the scheme is attractive first for the efficiency with which the approximated

solutions are computed, with a cost of only O(N2 log2N) per time step in our two

dimensional case through the use of FFTs. The cIIF scheme excels in its utility of

storage by requiring only O(N2) storage, as opposed to O(N4) storage via a "non-

compact" approach. The implicit treatment of the nonlinear component also grants

us a level of flexibility with regards to the time step sizes we can use. Lastly, the

nonlinear solution process can be done pointwisely, thus becoming very efficient when

used in conjunction with Newton-based algorithms.

The paper is organized as follows: In Chapter 2 we will propose the cIIF scheme

in the cases where periodic or zero-flux boundary conditions are imposed. In chapter

3 we will discuss the stability properties of the scheme. Chapter 4 will contain the

numerical testing of the scheme where the accuracy and convergence of the scheme

will be demonstrated, and will be followed by our conclusions in Chapter 5.

3
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Chapter 2

Compact Implicit Integration Factor Methods

Let Ω be an open rectangular domain in R2 with T > 0. Consider the Allen-Cahn

equation where D > 0 is the diffusion constant, and the nonlinear forcing term is

defined as

f(u) = 1
ε2

(
u3 − u

)
(2.1)

The problems we shall concern ourselves with will have either periodic or zero-flux

boundary conditions.

Suppose that Ω = {(x, y)|xb < x < xe, yb < y < ye}. By replacing the Laplace

operator, equation (1.1) can then be written concisely as

∂u

∂t
= D (uxx + uyy)− f(u), (x, y) ∈ Ω, t ∈ (0, T ) (2.2)

Discretizing the PDE will require the evaluation of u at discrete points of a uniform

mesh Ω′ = {(xi, yj) | xi = x0 + i · hx, yj = y0 + j · hy}, where

hx = xe − xb
Nx

, hy = ye − yb
Ny

(2.3)

for Nx, Ny ∈ N.

2.1 The model problem with periodic boundary conditions

We derive the cIIF method for equation (1.1) We also define the periodic boundary

condition as one having the following set of conditions satisfied,
u(xb, y) = u(xe, y), ux(xb, y) = ux(xe, y), y ∈ [yb, ye], t ∈ [t0, t0 + T ]

u(x, yb) = u(x, ye), uy(x, yb) = uy(x, ye), x ∈ [xb, xe], t ∈ [t0, t0 + T ]
(2.4)

4
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With Ω′ defined as our mesh we shall use the second-order accurate central differ-

encing scheme to approximate the spatial derivatives. Set ui,j = ui,j(t) ≈ u(t, xi, yj)

for 0 ≤ i ≤ Nx − 1 and 0 ≤ j ≤ Ny − 1. Denote the set of unknowns as

U = (ui,j)Nx×Ny
=



u0,0 u0,1 . . . u0,Ny−1

u1,0 u1,1 . . . u1,Ny−1

... ... . . . ...

uNx−1,0 uNx−1,1 . . . uNx−1,Ny−1


(2.5)

and define

GP×P =



−2 1 0 . . . . . . 1

1 −2 1 0 . . . 0
. . . . . . 0

0 0 . . . 1 −2 1

1 0 . . . 0 1 −2


It is obvious in this case that GT = G. Furthermore, let us define the matrices A

and B equal to

A = D

h2
x

GNx×Nx , B = D

h2
y

GNy×Ny

We then obtain the following semi-discretized and compact representation of the

model equation
dU
dt

= AU + UB−F(U) (2.6)

where F(U) = (f(ui,j)) , 0 ≤ i ≤ Nx − 1, 0 ≤ j ≤ Ny − 1.

Since the matrices A and B are diagonalizable we can rewrite the matrices A and

B as

A = PxDxP−1
x , B = PyDyP−1

y (2.7)

5
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where Dx and Dy are the diagonal matrices holding as its diagonal elements the

eigenvalues of A and B respectively. It bears noting that in the general case, P−1
x =

PT
x and P−1

y = PT
y provided Px, Py are orthonormal.

Let us define V = P−1
x UPy. Then substituting V for U in (2.6) we get

dV
dt

= DxV + VDy −P−1
x F(U)Py. (2.8)

Suppose that the diagonal matrices are defined equivalently as Dx = diag[dx1 , . . . , dxNx
],

Dy = diag[dy1, . . . , dyNy
]. At this point we perform a fundamental step derived from

Integrating Factor and Exponential Time Differencing methods, which is to multiply

the left and right of both sides of equality (2.8) by e−Dxt and e−Dyt respectively. This

gives us

e−Dxt

(
dV
dt

)
e−Dyt = e−Dxt

(
DxV + VDy −P−1

x F(U)Py

)
e−Dyt, (2.9)

or equivalently

e−Dxt

(
dV
dt
−DxV−VDy

)
e−Dyt = −e−Dxt

(
P−1
x F(U)Py

)
e−Dyt. (2.10)

The left of (2.10) can be rearranged so that it is the derivative with respect to

t of a single matrix X. To do so, we introduce some new notations. First, we set

H = (hi,j)(Nx−1)×(Ny−1), where hi,j = dxi + dyj and 0 ≤ i ≤ Nx − 1, 0 ≤ j ≤ Ny − 1.

Also, we define the operation e∗ such that

(e∗)H =
(
ehi,j

)
(Nx−1)×(Ny−1)

.

We also define a second operator � as the element by element multiplication of two

matrices of similar structure, or

(M� L) = (mi,jli,j) ,

where M = (mi,j)P×P and L = (li,j)P×P.

6
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With these operations defined, direct calculations on (2.10) leads to a nice repre-

sentation where the left portion holds the linear portion of the original PDE, and the

right holds the nonlinear portion, or

d(V� (e∗)−Ht)
dt

= −e−Dxt
(
P−1
x F(U)Py

)
e−Dyt. (2.11)

We partition the time interval as follows. Setting t0 = 0, let tn = t0 + n∆t,

where ∆t = T/Nt, 0 ≤ n ≤ Nt, and Nt is the number of equal partitions of the time

interval. At this point, we integrate (2.11) from tn to tn+1, in effect treating the linear

component of the equation exactly. This leaves us with

Vn+1 � (e∗)−H∆t −Vn = −
∫ ∆t

0

(
P−1
x F (U(tn + τ)) Py

)
� (e∗)−Hτ dτ, (2.12)

or equivalently,

Vn+1 = Vn −
(∫ ∆t

0

(
P−1
x F (U(tn + τ)) Py

)
� (e∗)−Hτ dτ

)
� (e∗)H∆t (2.13)

From this a general compact approximation scheme for solving Un+1,

Un+1 = Px

(
(P−1

x UnPy)� (e∗)H∆t −
∫ ∆t

0
(P−1

x F(U(tn + τ))) (2.14)

� (e∗)H(∆t−τ)dτ
)

P−1
y . (2.15)

Having dealt with the linear component, we are left with the integral

∫ ∆t

0
(PxF(U(tn + τ))Py)� (e∗)H(∆t−τ)dτ,

to which we implement an implicit scheme which not only approximates the integrand,

but also allows for an appropriate level of stability while doing so. One such approach

is the Lagrange interpolation polynomial of degree r at the nodes tn+1, tn, . . . , tn+1−r

applied to the integrand

F(tn + τ) = (P−1
x F(U(tn + τ))Py)� (e∗)H(∆t−τ),

7
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as proposed in [14]:

P F
r (tn + τ) =

r−1∑
s=−1

ωr,s(τ)F(tn−s) (2.16)

where

ωr,s(τ) =
r−1∏
l=−1
l 6=s

τ + l∆t
(l − s)∆t .

It is easy then to see that, after approximating,

∫ ∆t

0
(P−1

x F(U(tn + τ))Py)� (e∗)H(∆t−τ)dτ

≈ ∆t
r−1∑
s=−1

β(r,s)(P−1
x F(Un−s)Py)� (e∗)(s+1)H∆t

= ∆t
r−1∑
s=0

β(r,s)(P−1
x F(Un−s)Py)� (e∗)(s+1)H∆t

+ ∆t β(r,−1)(P−1
x F(Un+1)Py) (2.17)

with βr,s =
∫ ∆t

0
ωr,s(τ)dt, which is (r+1)-th order accurate. For simplicity, we again

only present the values we only present the values of {β(r,s)
i,j } for r = 0, 1, 2 below:

r = 0 : β(0,−1) = 1;

r = 1 : β(1,−1) = 1
2 , β(1,0) = 1

2 ;

r = 2 : β(2,−1) = 5
12 , β(2,0) = 2

3 , β(2,1) = − 1
12 ,

where it’s important to note that {β(r,s)
i,j } is constant across all points. Now, putting

(2.17) into (2.14) yields a compact implicit integration factor scheme that is second

order accurate in space and (r + 1)-th order accurate in time:

Un+1 = Px

(
(P−1

x UnPy)� (e∗)H∆t −∆t
r−1∑
s=0

β(r,s)(P−1
x F(Un−s)Py)

� (e∗)(s+1)H∆t
)

P−1
y −∆tβ(r,−1)F(Un+1). (2.18)

Remark 1. In the nonlinear case, where f(u) 6= 0, the scheme (2.18) is evaluated

pointwisely. As a result it it very efficient especially when used in conjunction with

some Newton-type iterative method for scalar methods.

8
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Remark 2. In the cases where r ∈ {0, 1, 2}, we get a first-order cIIF accurate in time

scheme for r = 0 as

Un+1 = Px

((
P−1
x UnPy

)
� (e∗)H∆t

)
P−1
y −∆tF(Un+1), (2.19)

a second-order accurate in time cIIF scheme for r = 1 as

Un+1 = Px

(
(P−1

x (Un −
∆
2 F(Un))Py)� (e∗)H∆t

)
P−1
y −

∆t
2 F(Un+1), (2.20)

or a third-order accurate in time cIIF scheme corresponding to r = 2 as

Un+1 = Px

(
(P−1

x (Un −
2∆t

3 F(Un))Py)� (e∗)H∆t

+ ∆t
12 (P−1

x (F(Un−1))Py)� (e∗)2H∆t
)
− 5∆t

12 F(Un+1)

2.2 The model problem with no-flux boundary conditions

In this case, we define the zero-flux boundary condition as

∂u

∂n
= 0, x ∈ ∂Ω, t ∈ (0, T ) (2.21)

Working with our rectangular mesh, we may then set

U = (ui,j)(Nx+1)×(Ny+1) =



u0,0 u0,1 . . . u0,Ny

u1,0 u1,1 . . . u1,Ny

... ... . . . ...

uNx,0 uNx,1 . . . uNx,Ny


(Nx+1)×(Ny+1)

(2.22)

and the corresponding matrix G defined as

GP×P =



−2 2 0 . . . . . . 0

1 −2 1 0 . . . 0
. . . . . . 0

0 0 . . . 1 −2 1

0 0 . . . 0 2 −2


P×P

(2.23)

9
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Note that in the zero flux case GT 6= G, unlike the periodic case. We thereafter set

A = D

h2
x

G(Nx+1)×(Ny+1), B = D

h2
y

G(Ny+1)×(Ny+1). (2.24)

With the matrices defined as shown, the cIIF scheme for the problem with no-flux

boundary conditions follows the exact same form as the scheme (2.18).

Remark 3. As discussed in [10] the computation complexities of PxV, P−1
x V, PyV,

and P−1
y V for any (Nx + 1) × (Ny + 1) matrix in the zero-flux case, or Nx × Ny

matrix in the periodic case, can be reduced from O(N3) to O(N2 log2N) for N =

max{Nx′ , Ny′} if through the use of Fast Fourier Transforms we choose the eigenvalues

dxi , d
y
j appropriately.

10
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Chapter 3

Stability Analysis

3.1 The nonlinear system solver and convergence

We go back to the definition of the Allen-Cahn equation. Let us briefly write (2.18)

as

Un+1 = CON−∆tβ(r,−1)F(Un+1) (3.1)

where

CON = Px

(
(P−1

x UnPy)� (e∗)H∆t −∆t
r−1∑
s=0

β(r,s) (P−1
x F(Un−s)Py)� (e∗)(s+1)H∆t

)
P−1
y

can be calculated using results from previous time steps. In approximating the orig-

inal equation (1.1), our goal will be to apply the scheme (2.18) towards solving

Un+1 = CON− ∆tβr,−1

ε2
(Un+1 �Un+1 �Un+1 −Un+1) (3.2)

which is equivalent to solving G((Un+1)i,j) = 0 where

G((Un+1)i,j) = (Un+1)3
i,j + (ρ− 1)(Un+1)i,j − ρ(CON)i,j (3.3)

and

ρ = ε

∆tβ(r,−1) . (3.4)

Thus, in implementing Newton’s algorithm for G((Un+1)i,j) = 0 we get that

(Un+1)(k+1)
i,j = (Un+1)(k)

i,j −
G((Un+1)(k)

i,j )
G ′((Un+1)(k)

i,j )
. (3.5)

It is easy to show that for ρ ≥ 1, the nonlinear system (3.2) is a contraction, thus

implying the Newton’s method is stable. Consequently, when r = 0 we require

∆t ≤ ε2; r = 1 requires ∆t ≤ 2ε2; and r = 2 requires ∆t ≤ 12
5 ε

2.

11
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Chapter 4

Numerical Testing

In this chapter, we shall study the stability and convergence properties of the cIIF

scheme, based on its application to approximating a mean flow curvature problem and

a traveling wave solution. The computations were performed on a PC with Intel Core

i7 3.2GHz processor and 6GB RAM. MATLAB was also used to write the programs

on which the testing was done.

The experiments in this section will be based on a spatial domain Ω ∈ R2 and a

time interval [0, T ]. The number of partitions along each spatial axis, as well as the

the time discretization size Nt will be varied in order to study the convergence and

accuracy of the scheme. We note that the cIIF scheme is presumed to be stable as

the values chosen for the interaction term ε are small enough that they do not cause

major deviations from the true solution as time progresses.

4.1 Traveling Wave Solution

It is known that the Allen-Cahn equation in the whole space has a traveling wave

solution. In this application, we consider the space Ω = [−0.5, 1.5]2 ⊂ R2 where we

have 
∂u
∂t

= ∆u− 1
ε2

(u3 − u), (x, y) ∈ Ω, t ∈ [0, T ]

u(0, x, y) = 1
2

(
1− tanh

(
x

2
√

2ε2

))
, (x, y) ∈ Ω.

(4.1)

12
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Additionally, the zero-Neumann boundary condition ∂u
∂t
|∂Ω = 0 is imposed to allow

for an approximate exact solution (for ε << 1) of the form

u(t, x, y) = 1
2

(
1− tanh

(
x− st
2
√

2ε

))
(4.2)

with the constant s set to 3√
2ε .

The numerical results were run based on the benchmark tests of [12, 10]. We

set out to numerically confirm both the accuracy of the space discretization as finer

meshes are used, as well as the (r+ 1)-th order accuracy of the time discretization as

finer partitions along [0, T ] were implemented.

The test of the accuracy of space discretization with r = 2 yielded the first set of

results in Table 4.1. The convergence rates as the meshes of the spatial domain were

made finer were observed, and the results prove that the cIIF scheme is second-order

accurate in space with respect to both the L2 and L∞ error norms.

While performing the accuracy of space discretization test it was noted that the

further refinement of the spatial mesh into 512 × 512 and 1024 × 1024 grid while

holding Nt constant yielded results which might have been interpreted as inconsistent

with the convergence rates already calculated. However, this is due to the the errors

attributable to the spatial domain initially decreasing in orders of magnitude as finer

meshes are used. Past a point, the error associated with the space domain did not

decrease as quickly with finer meshes, while the contribution to the error by the time

approximations remained comparable.

Numerical tests were also performed to study the accuracy of time discretization.

In the three cases corresponding to r = 0, 1, 2 the results confirmed that the cIIF

scheme is indeed first, second, and third order accurate in time respectively. Testing

was also done to calculate the energy based on the cIIF result. Consistent with the

case of the exact solution, the energy decreased as time increased as is illustrated in

Figure 4.2. The plots of the exact solution and the cIIF scheme at time T = 0.75s

are also given by Figures 4.1a and 4.1b.

13
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Table 4.1: Errors and convergence rates at the final time T = 3√
2ε of the 2D traveling

wave problem using the cIIF scheme.

(Nx ×Ny)×Nt L2 Error CR L∞ Error CR
Accuracy test of space discretization, r = 2

(322)× 1024 3.6271e-01 - 8.2217e-01 -
(642)× 1024 1.2385e-01 1.55 3.3532e-01 1.29
(1282)× 1024 3.2897e-02 1.91 9.5657e-02 1.81
(2562)× 1024 8.1367e-03 2.02 2.3901e-02 2.00
(5122)× 1024 2.1819e-03 1.90 5.1100e-03 2.23

Accuracy test of time discretization, r = 0
(10242)× 16 1.2073 - 9.9999e-01 -
(10242)× 32 1.2070 0.00 9.9970e-01 0.00
(10242)× 64 4.4498e-01 1.44 8.64791e-01 0.21
(10242)× 128 1.9683e-01 1.18 5.4035e-01 0.68

Accuracy test of time discretization, r = 1
(10242)× 16 5.3609e-01 - 8.9058e-01 -
(10242)× 32 9.2209e-02 2.54 2.6730e-01 1.74
(10242)× 64 2.2568e-02 2.03 6.7590e-02 1.98
(10242)× 128 6.1184e-03 1.88 1.8196e-02 1.89

Accuracy test of time discretization, r = 2
(10242)× 16 1.9736e-01 - 5.1906e-01 -
(10242)× 32 2.7285e-02 2.85 8.0851e-02 2.68
(10242)× 64 4.3940e-03 2.63 1.2883e-02 2.65

(a) (b)

Figure 4.1: Plots of the traveling wave solution at time (a) t=0 and (b) t = 3
4s with

s = 3√
2ε , using the cIIF results with grid (512)2 × 1024, third-order accurate in time,

with interaction term ε = 0.015
.

4.2 Mean Curvature Flow

In this example, we shall consider the mean curvature flow problem based on [13, 8].

Let Ω = [−0.5, 0.5]2. The mean flow problem we shall simulate is described in the

14
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Figure 4.2: Evolution of the energy functional E(u) by the cIIF results with mesh
(512)2 × 1024 with ε = 0.015 and third-order accurate in time as time increases.

following: 
∂u
∂t

= ∆u− 1
ε2

(u3 − u), x ∈ Ω, t ∈ [0, T ]

u(0, x, y) = tanh
(
R0−
√
x2+y2

√
2ε

)
, x ∈ Ω.

(4.3)

with R0 = 0. For a more detailed exposition on this test example, see [18, 6, 7].

Additionally, a periodic boundary condition is imposed. With the conditions defined

thus far, the PDE models the shrinking process of a circle in the plane. The inital

radius of the circle is denoted R0. Let the radius of the circular region at time t be

denoted by R(t) and the area by A(t). As ε → 0, we know that the theoretic limit

radius satisfies [18, 12]
dRlim

dt
= − 1

Rlim

, (4.4)

hence we have

Rlim(t) =
√
R2

0 − 2t (4.5)

Correspondingly, it also holds that

Alim(t) = π(R2
0 − 2t), (4.6)

We set the final time to T = 0.075. Thus, consistent with 4.5 it follows that Rlim(T ) =

0.1. Numerical testing was performed to approximate the radius for the different cases

using the cIIF scheme and the results were recorded in Table 4.2. Since the exact
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radius solutions for the provided final time T was not readily available we opted to

use the radii results based on the mesh (1024)2 × 1024. Denoting as Rε the values

for ε = 0.04, 0.02, we used these values as approximates to the exact solutions at the

final time T to calculate the convergence rates. The results are reported in Table 4.3.

The numerical results show that the cIIF scheme is second-order accurate in space

in both the cases of ε = 0.04 and ε = 0.02. Further tests were completed to test the

accuracy of time discretization with respect to the spatial mesh 1024 × 1024. The

errors are shown to be monotonically decreasing for all orders of accuracy (r + 1),

r = 0, 1, 2. The convergence rates yielded by our results especially for the first- and

second-order accuracies agree with the theoretical results of Chapter 2. It is noted,

however, that the convergence rates associated with the third-order accuracy tests

are highly oscillatory and do not approach the theoretical value of 3 consistently.

This is due to the sizes of the grids used, as testing for higher orders of accuracies

require finer meshes both in the spatial and temporal domain in order to achieve

optimum convergence. This is also especially true when small values of ε are used

for the experiments. Finally, we see that |Rε − Rlim| is equal to 9.2900e − 04 and

2.790e − 04 for ε = 0.04 and 0.02 respectively. This yielded a convergence rate of

1.7354 with respect to the interaction term ε.

The shrinking of the circle as time progresses is captured in the Figure 4.4. It

is seen that the radius does shrink as we march forward in time. Furthermore, the

evolution of the energy and area as computed by the cIIF scheme is seen to decrease

linearly, as Figure 4.5 shows.
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Figure 4.3: Visualization of the shrinking circle at times t = 0, 0.02 and 0.075 respec-
tively (from left to right) using the cIIF scheme with grid (1024)2 × 512, interface
thickness ε = 0.02, and third-order accurate in time.

Figure 4.4: Visualization of the shrinking circle at times t = 0, 0.02 and 0.075 respec-
tively (from left to right) using the cIIF scheme with grid (1024)2 × 512, interface
thickness ε = 0.04, and third-order accurate in time.

Figure 4.5: Evolution of the energy and area (left and right respectively) of the
shrinking circle along time using the cIIF scheme with grid (1024)2×512, interaction
thickness ε = 0.04 and third-order accurate in time.
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Table 4.2: Numerical results for the radius of the mean curvature flow shrinking circle
experiment at time T = 0.075 using the cIIF Scheme.

(Nx ×Ny)×Nt
ε = 0.04 ε = 0.02

R R−Rlim R R−Rlim

Accuracy Test of Space Discretization r = 2
(64)2 × 1024 0.1054 5.4070e-03 0.1219 -2.1860e-02
(128)2 × 1024 0.1007 6.6905e-04 0.1054 5.3700e-03
(256)2 × 1024 0.09945 -5.4620e-04 0.1011 1.0817e-04
(512)2 × 1024 0.0991 -8.5212e-04 0.1000 -6.0941e-06
(1024)2 × 1024 0.0991 -9.2873-04 0.0997 -2.7914e-04

Accuracy Test of Time Discretization r = 0
(1024)2 × 16 0.5642 4.6419e-01 0.5642 4.6419e-01
(1024)2 × 32 0.5642 4.6419e-01 0.5642 4.6419e-01
(1024)2 × 64 0.0981 -1.8916e-03 0.5642 4.6419e-01
(1024)2 × 128 0.0986 -1.3563e-03 0.5642 4.6419e-01
(1024)2 × 256 0.0989 -1.1379e-03 0.0989 -1.1064e-03
(1024)2 × 512 0.0990 -1.0332e-03 0.0993 -6.6446e-04

Accuracy Test of Time Discretization r = 1
(1024)2 × 16 0.5642 4.6421e-01 0.5650 4.6500e-01
(1024)2 × 32 0.0963 -3.7100e-03 0.5642 4.6417e-01
(1024)2 × 64 0.0985 -1.5246e-03 0.5642 4.6418e-01
(1024)2 × 128 0.0989 -1.0691e-03 0.0996 -4.4414e-04
(1024)2 × 256 0.0990 -9.6320e-04 0.0997 -3.1580e-04
(1024)2 × 512 0.0991 -9.3735e-04 0.0997 -2.8878-04

Accuracy Test of Time Discretization r = 2
(1024)2 × 16 0.5701 4.7006e-01 0.5949 4.9402e-01
(1024)2 × 32 0.0982 -1.8280e-03 0.5856 4.8556e-01
(1024)2 × 64 0.0990 -9.6272e-04 0.5669 4.6692e-01
(1024)2 × 128 0.0991 -9.2061e-04 0.09967 -3.3355e-04
(1024)2 × 256 0.0991 -9.2632e-04 0.0997 -2.8464e-04
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Table 4.3: Errors and convergence rates associated with the numerical results of Table
4.2 using the cIIF scheme.

(Nx ×Ny)×Nt
ε = 0.04 ε = 0.02

|R−Rε| CR |R−Rε| CR
Accuracy Test of Space Discretization r = 2

(64)2 × 1024 6.3360e-03 - 2.2139e-02 -
(128)2 × 1024 1.5980e-03 1.99 5.6490e-03 1.97
(256)2 × 1024 3.8300e-04 2.06 1.3610e-03 2.05
(512)2 × 1024 7.7000e-05 2.31 2.7300e-04 2.32

Accuracy Test of Time Discretization r = 0
(1024)2 × 16 4.6512e-01 - 4.6447e-01 -
(1024)2 × 32 4.6512e-01 0.00 4.6447e-01 0.00
(1024)2 × 64 9.6300e-04 8.92 4.6447e-01 0.00
(1024)2 × 128 4.2700e-04 1.17 4.6447e-01 0.00
(1024)2 × 256 2.0900e-04 1.03 8.2700e-04 9.13
(1024)2 × 512 1.0400e-04 1.01 3.8500e-04 1.10

Accuracy Test of Time Discretization r = 1
(1024)2 × 16 4.6514e-01 - 4.6528e-01 -
(1024)2 × 32 2.7810e-03 7.39 4.6445e-01 0.00
(1024)2 × 64 5.9600e-04 2.22 4.6446e-01 0.00
(1024)2 × 128 1.4000e-04 2.09 1.6500e-04 11.46
(1024)2 × 256 3.4000e-05 2.04 3.7000e-05 2.16
(1024)2 × 512 8.0000e-06 2.09 9.0000e-06 2.04

Accuracy Test of Time Discretization r = 2
(1024)2 × 16 4.7099e-01 - 4.9518e-01 -
(1024)2 × 32 8.9900e-04 9.03 4.8581e-01 0.03
(1024)2 × 64 3.3000e-05 4.77 4.6720e-01 0.06
(1024)2 × 128 8.0000e-06 2.04 5.5000e-05 13.05
(1024)2 × 256 3.0000e-06 1.42 6.6000e-06 3.20
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Chapter 5

Conclusion

In this thesis, the compact Implicit Integration Factor was studied and proposed

for the solution of two dimensional Allen-Cahn equations with periodic and no-flux

boundary conditions. The efficiency with which the spatial derivatives are computed,

due largely to the compact treatment of the Laplacian by the cIIF scheme yielded

a scheme that is second-order accurate in space and up to third-order accurate in

time. While the examples we tested on dealt with domains in the plane, further

work could be done to create an implementation of the cIIF scheme for dimensions

three or higher. Also, further work can be done to extended the scheme to support

higher orders of accuracy both in the space and time domains. Lastly, while our work

focused on examples of the Allen-Cahn equations, reseach can be done to show how

the cIIF scheme could be used in other types of reaction-diffusion PDEs.
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